Digital Comb Filter (NTSC)

Description

The CXD2073S is an adaptive comb filter compatible with NTSC system, and provide high-precision Y/C separation with a single chip.

Features

- Y/C separation by adaptive processing
- Horizontal aperture compensation circuit
- 8-bit A/D converter (1 channel)
- 8-bit D/A converter (2 channels)
- One 1H delay line
- Clamp circuit

Absolute Maximum Ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vss}=0 \mathrm{~V}\right)$

- Supply voltage

DVdd Vss -0.5 to +7.0 V
DAVD Vss -0.5 to +7.0 V
ADVD Vss -0.5 to +7.0 V
PLVD Vss -0.5 to +7.0 V

- Input voltage $\mathrm{VI} \mathrm{Vss}-0.5$ to $\mathrm{VdD}+0.5 \mathrm{~V}$
- Output voltage Vo Vss -0.5 to VDD +0.5 V
- Operating temperature

Topr $\quad-20$ to $+75 \quad{ }^{\circ} \mathrm{C}$

- Storage temperature

Tstg $\quad-55$ to $+150 \quad{ }^{\circ} \mathrm{C}$

Recommended Operating Conditions

- Supply voltage
DVdd
5.0 ± 0.25
V
DAVD $\quad 5.0 \pm 0.25 \quad V$
ADVD $\quad 5.0 \pm 0.25 \quad V$
PLVD $5.0 \pm 0.25 \quad$ V
- Operating temperature

Topr $\quad-20$ to $+75 \quad{ }^{\circ} \mathrm{C}$

Structure

Silicon gate CMOS IC

Applications

Y/C separation for color TVs and VCRs

Pin Configuration (Top View)

Block Diagram

Pin Description

Pin No.	Symbol	I/O	
1	PLVD	-	Analog power supply for PLL (+5V)

Electrical Characteristics
$\left(\mathrm{VdD}=5 \pm 0.25 \mathrm{~V}, \mathrm{VSS}=0 \mathrm{~V}, \mathrm{Ta}=-20\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$

Item	Symbol	Conditions	Min.	Typ.	Max.	Unit
Supply voltage	DVdd	-	4.75	5.0	5.25	V
	ADVD					
	DAVD					
	PLVD					
Operating temperature	Topr	-	-20	-	+75	${ }^{\circ} \mathrm{C}$
Supply current	IDD	Clock 14MHz	-	55	80	mA
High level input voltage	VIH	CMOS level (Pin 3, 16 to 19, 26, 28)	VDD $\times 0.7$	-	VDD	V
Low level input voltage	VIL		Vss	-	Vdd $\times 0.3$	V
High level output voltage	VoH	$\mathrm{IOH}=-2 \mathrm{~mA}($ Pin 20 and 25)	VDD-0.8	-	VdD	V
Low level output voltage	Vol	$\mathrm{lol}=4 \mathrm{~mA}($ Pin 20 and 25)	Vss	-	0.4	V
Logical Vth	LVth	FIN (Pin 27)	-	Vdd/2	-	V
Input voltage	VIn		0.5	-	Vdd	Vp-p
Feedback resistor	Rfb		250k	1M	2.5M	Ω

A/D Converter Characteristics
$\left(\mathrm{VDD}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{f}=10 \mathrm{MHz}\right)$

Item	Symbol	Conditions	Min.	Typ.	Max.	Unit
Resolution	n		-	8	-	bit
Max. conversion speed	fmax		14.3	-	-	MSPS
Analog input band width	BW	-3 dB	-	18	-	MHz
Input bias	BOTTOM		0.48	0.52	0.56	V
	TOP - BOTTOM		1.96	2.08	2.22	V
Differential linearity error	Ed		-1.0	-	+1.0	LSB
Integral linearity error	EL	-3.0	-	+3.0	LSB	

D/A Converter Characteristics
$\left(\mathrm{VdD}=5 \mathrm{~V}, \mathrm{~V}\right.$ RF $\left.=2 \mathrm{~V}, \mathrm{IRF}=3.3 \mathrm{k} \Omega, \mathrm{R}=200 \Omega, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{f}=10 \mathrm{MHz}\right)$

Item	Symbol	Conditions	Min.	Typ.	Max.	Unit
Resolution	n		-	8	-	bit
Max. conversion speed	fmax	-	14.3	-	-	MSPS
Differential linearity error	Ed	-	-0.8	-	+0.8	LSB
Integral linearity error	EL	-	-2.0	-	+2.0	LSB
Output full-scale voltage	VFS	-	1.805	1.90	1.995	V
Output full-scale current	IFS	-	-	9.5	15	mA
Output offset voltage	Vos	-	-	-	1.0	mV
Precision guaranteed output voltage range	Voc	-	1.8	-	2.1	V

Clamp

$$
\left(\mathrm{VDD}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{f}=10 \mathrm{MHz}\right)
$$

Item	Symbol	Conditions	Min.	Typ.	Max.	Unit
Clamp level*1	CLV		-	0.67	-	V

*1 Sync tip clamp

Description of Functions

- Horizontal aperture compensation

Compensates aperture degradation accompanied by D/A conversion.
This compensation is effective for the following modes; adaptive processing, Y through, and simple comb modes.

- Switching of Y/C separation modes

The following four modes can be set; however, the adaptive processing mode or Y through mode is normally used.
(1) Adaptive processing mode

This mode detects interline correlation, switches between comb filter processing and BPF processing, and operates Y / C separation.
(2) Y through mode

The composite video signal input from ADIN (Pin 5) is A/D converted. It is also D/A converted, and then output from AYO (Pin 10).
At this time, the output of ACO (Pin 8) is the same output as that of adaptive processing mode.
(3) BPF mode

C signal is generated by passing composite video signal through BPF.
Y output is a signal in which the C signal generated is subtracted from input composite video signal.
(4) Simple comb mode

Y/C separation is operated by the comb filter processing forcibly.

Modes	MOD1 (Pin 18)	MOD2 (Pin 17)
Adaptive processing mode	L	L
Y through mode	L	H
BPF mode	H	L
Simple comb mode	H	H

- Selection Pin Setting Table

Pin No.	Symbol	H	L
3	CLPEN	Internal clamp not used	Internal clamp used
17	MOD2	See the table above.	
18	MOD1		
19	APCN	Horizontal aperture compensation ON	Horizontal aperture compensation OFF
28	CKSL	Internal 4-multiple PLL used	Internal 4-multiple PLL not used

Application Circuit for D/A Converter

- Method of selecting output resistance

The CXD2073S has a built-in current output-type D/A converter. To obtain the output voltages, connect resistors to AYO and ACO pins.

$$
\text { VFS }=\mathrm{IFS} \times \mathrm{R}
$$

Here, VFS is output full-scale voltage, IFS is output full-scale current, and R is the output resistance connected to each IO.
In addition, connect a resistance of 16 times the output resistor to the reference current pin IRF. In the case where the value comes to be impractical, use a value of resistance as close to the value calculated as possible. At that time,

$$
V F S=V R F \times 16 \times R / R ' .
$$

R is the output resistance connected to each IO, R' is the resistance connected to IRF, and VRF is the VRF pin voltage. Power consumption can be reduced by using higher resistance values, but then glitch energy and data settling time increase contrastingly. Select optimum resistance values according to the system applications.
In case of the circuit above, VFS $=2[\mathrm{~V}] \times 16 \times 0.2 \mathrm{k} / 3.3 \mathrm{k} \approx 1.93$ [V], IFS $=1.93 / 0.2 \mathrm{k} \approx 9.65$ [mA].

Notes on Operation

- Power supply, ground

Separate the analog and digital systems around the device to reduce noise effect. Both analog and digital Vdd are respectively bypassed to Vss as close to these Vdd and Vss pins as possible through ceramic capacitors of approximately $0.1 \mu \mathrm{~F}$.
Also, layout the power supply and ground pattern of the board substrate as wide as possible to lower impedance.

- Clock

Use the burst-locked clock. Separate the clock line on the board substrate as far as possible from analogrelated pins, analog power supply, and analog ground.

- ADIN (analog input signal)
(1) Low impedance drive

The input signal to ADIN (Pin 5) should be driven at the low impedance and its wiring should be as short as possible.
(2) Input level

Set the input signal peak-to-peak value VPP to 1.75 V or less. Additionally, VPP is recommended to be 1.3 V or more since the A / D converter input dynamic range should be made as large as possible.

The DC level at the ADIN pin is as shown in the diagram above when the internal sync tip clamp is used.

Labeling the internal D/A converter AYO output full-scale voltage as VFS, the correspondence between the ADIN pin voltage and AYO output pin voltage (DC level) is as follows;

DC voltage at point $\mathrm{A} \rightarrow 0$ [V]
DC voltage at point $B \rightarrow$ AYO maximum output voltage [V]
DC voltage at point $\mathrm{C} \rightarrow \mathrm{VFS}$ [V]
The VFS is the AYO output voltage generated when the voltage equivalent to the point C is input.

- Internal delay

The delay from the internal A/D converter to the D/A converter output is 21.5 clocks $+\alpha n s$ ($\alpha: D / A$ converter analog output delay $=$ approximately 20 ns).
The 21.5 clocks are the sum of the clocks shown below;
A/D converter: 3.5 clocks (" 0.5 " is for fetching the data at the fall of the clock.)
Internal logic : 17 clocks
D/A converter: 1 clock

Application Circuit

(1) When the fsc clock is used

> X'tal
3.58 MHz

Recommended LPF: TH327LSJS-2513LCAS (TOKO)
(-3 dB at 8 MHz)

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.
(2) When the 4 fsc clock is used

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

Example of Representative Characteristics

Analog I/O amplitude ratio vs. VRF pin voltage
Input signal peak-to-peak voltage $\leq 1.75 \mathrm{~V}$

Output full-scale voltage vs. Ambient temperature

30PIN SDIP (PLASTIC)

Two kinds of package surface:
1.All mat surface type.
2.All mirror surface type.

PACKAGE STRUCTURE

SONY CODE	SDIP-30P-01
EIAJ CODE	SDIP030-P-0400
JEDEC CODE	-

MOLDING COMPOUND	EPOXY RESIN
LEAD TREATMENT	SOLDER/PALLADIUM
LEAD MATING	
PACKAGE MASS	COPPER ALLOY

